
m: SENSITIVI~ ANALYSIS AND A NATIOSAL ENERGYM)DEL E~LE

AUTHOR(S): ~ichBcl Da ~~Y

Tim b Alwrm Bcmmhc hatoq IWWIWIS that IIW pm.
Mm tifIfv this wIIde m uwrk ~rfmnwd undw Ilm M.
p- of !Im U.S. bmrtrmnt of Erw~

SUBMllTED TO: 1979DOEStatistical SwPOSim
Gstlinburg, 7N, October 24-26, 1979.

~:m_ .. . . . . . ..

BV =-ptmm of Ihimwtda, Iha wblniwr ~mzm IhaI !Iw
IJ,S. wrrmmnl rwmrn s nwumhmw, rovMv. fM hQIUO

to @lnh or raprmi~ lIw publrslmd lam of this mlrrbw
tire, or 10 @law othcm 10 do so, for US. ~ucrmnanl pur

w-a.

L%- LOSAIAMOS SCIENTIFIC LABORATORY
Post OffIce Box 1883 Los Alamos, New Mexico 87545
ArI AffhnaUw Actbn/Eqd OPWIW(Y =@cw

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



SENSITIVITY ANALYSIS AND A NATICNAL ENERGY MODEL EXAMPLE

Michael D. McKay
Statistics Group

Los Alamoa Scientific Laboratory
Los Alamos, New Mexico

October, 1979

ABSTRACT

Sensitivity amlysis, a study of changes in a model output
produced by varying model inputs, is much more than estimating
partial derivatives. As a part of model evaluation, it is an
exploratory process directed towards ?inding out how and why a
model responds to different values of inputs. When viewed as a
data analysis mroblem, the intent of sensitivity analysis is to
make an inference about a model based on a sample of observations
generated frcnnthe space of input values. The validity of the
inferences is tied closely to the laws, or assumptions, relating
the observations (data) and the model.

INTRODUCTION

This presentation is intended to serve as an introduction to a discussion

of sensitivity analysis of complex models. By sensitivity analvsis, I mean,

very generally, a study of changes in a model output produced by varying model

inputs. When viewed as a study of variation, sensitivity rnalysis is much

more than estimating what is called a “sensitivity coefficient,” the rate of

change of an output with respect to an input. Hence, sensitivity analysis may

not be the right term to use to refer to the study. Indeed, statisticians,

whose primary function is to study and explain variation, are rarely called

sensitivity analysts. Nevertheless, I will use the term seu$itiv’ty analysis

in the broad sense.

The definition of sensitivity analysis - a study of changes in a model

output produced by varying model inpute - does not i~ediately lead to a de-

finition of sensitivity or to definitions of ❑ easures of sensitivity. Rather

than trying to develop a sensitivity analysis methodology through the defini-

tion/theorem anproach, I think it is more ~seful, at least now, to specify ob-

jectives of the study - things one would like to find out about the model -
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and then look for analysis procedures (sensitivitymeasures) that will satisfy

the objectives.

The rest of the talk will cover some of the thoughts that have evolved

during work for the Nuclear Regula~ory Conmiasion and the Depar~ent of Energy

in the area of model (computer code) evaluation. We will look at what is

meant by a model, sensitivity analysis as a part of model evaluation, and a

data analysis approach to sensitivity analysis. Finally, some results of an

analysis of Lhe National Energy Model C04iL2will be presented as an illustra-

tion of what can be done in practice.

PART I - THOUGHTS ON SENSITIVITY ANALYSIS

A MODEL—.

In this discussion a model is a computer program (code) which transforms

a vector X of inputs into an output Y(t) which is a parametric function of

time. Symbolically,we write Y(t) = h(t;X) where h(”) represents the calcula-

tions done by the code. The inputs can be model parameters or problem des-

cription variables such as initial conditions. The space of input values for

which the model is intended to perform correctly is denoted by S, and t is on

some closed interval, say, [O,T].

When models are used to predict what might happen in a real system under

some set of conditions - for example, future energy demands or the response of

a nuclear reactor to a valve failure - the value of the input vector X which

will give the “correct” or best prediction is usually not known. We will des-

cribe this uncertainty in the input values by a probability function f(x) on

the input space S. Then, a ❑ ore complete symbolic description of a model is
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Y(t) M h(t;X)

X%f(x)forxc S

tc [0, T].

We will assume that f(”) is known, although in practice we may have only

incomplete information about it. Often, S is taken to be a Cartesian pro6uct

of intervals (“error bands” on the inputs) and f(”) is a uniform probability

function.

In the following discussions, the parameter t will occasionally be sup-

pressed in the notation for simplicity.

MODEL EVALUATION AND SENSITIVITY ANALYSIS

Model evaluation is concerned with many facets of the Y(t) = h(t; X) re-

lationship, including the logical structure and internal consistency of the

cumputer code, the plausibility

puts, and the agreement between

data. Since Y(t) is a function

both individual time points and

of the output for various values of the in-

the output and experimel.talor historical

of time, model evaluation can be performed for

also time intervals.

Sensitivity analysis is the part of model evaluation which studies the

changes in a model output produced by varying the inputs. As such, it can

cover a very broad area with respect to objectives and techr!iques.The objec-

tives may include determining the rate of change of the output with respect to

each input, ranking the inputs with respect to their importance, or specifying

the proportion of output variability attributable to each input.

More simply, one might say that the purpose of sensitivity analysis is to

see how a model responds to different values of the inputs. Cormequently, Gne

would study a model with the aim of discovering things about it. The key is

discovery - of predictable results and unexpected ones, of importan~ inputs

and unimportant ones, of a wide range of variability in the output or a not so

wide a one.
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If we accept the discovery notion, we should view sensitivity analysis as

an ●::ploratoryinvestigation until we know what things to look for and how to

measure them.

This approach to sensitivity analysis is one of those a statistician can

take when studying experimental data. Hence, by looking at sensitivity analy-

ais as a data analysis problem, a statistician might be able to see how to

modify and apply statistical analysis methnds to the area of sensitivity.

A DATA ANALYSIS APPROACH TO SENSITIVITY

Unless a model has a known and manageable analytic form that cm be mani-

pulated mtithematically,sensitivity studies will consist of choosing, say, N

vectors of the input for which values of the output are o%tained. The N pairs

‘xl’ Yl), ... , (xN, YN) constitute data on which analyses are per-

fmned.

As an example, suppose that X represents the nominal values of the in-0

dividual inputs and Y. is the corresponding nominal output value. Let Xi

be the vector of inputs with all values at their nominal except for cmponent

i, which has been perturbed by a small amount, aay di. An analysis could

consist of the calculation of estimates of the partial derivatives as

s. = (Yi - Yo)/di. One could use the number s
1

i as a measure of the

sensitivity of the output to input number i.

Viewed as a data analysis

to make an inference about the

(Xl, Yl), ... , (XN, YN). Two

problem, the intent of sensitivity analysis is

❑odel h(t; X) based on the observations

imnediate issues are (1) the selection

of input values Xl, ... , XN, and (2) the analyses to be performed.

On the selection of the input values, they should be chosen in a manner

related to both the intended use of the model and also the expected sensitiv-

ity analysis procedures. The selection of the aet of input values ❑ay be made

by intuitive choice, systematic designs, sampling plans, or combinations of

these. (The choice cf method might be influenced by the cost of the model
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calculations). Clearly, though, the total merits of the selection procedures

cannot be determined without reierence to the anticipated analysie.

The analysis of data has as its foundation the observed variation among

the outputs Yl, ... , YN, and the procedure used to select the input

valueo. These two things together constitute the basis for inferences about

the model.

Before continuing, something should be said about the difference between

data obtained from a computer code and experimental/observeddata familiar to

statisticians. There is no “random error” associated with computer calcula-

tions. Given an input vector X*, we assume that the calculation h(t;X*) will

always produce the same value Y*(t). This fact must be kept in mind when

talking about things like the variance of an estimator or a t-te~t.

In view of the properties of the data for a sensitivity study, classical

inference (hypothesis testing and estimation) must take on a slightly dif-

ferent perspective. Usually, we make inferences about a population using some

kind of a sample from it. The inferences are based on assumptions about the

population and the sample. To denote these assumptions, I will use the term

“law” rather than the term “model” (as in a linear model) to avoid confusion

with the model Y(t) = h(t; X). Generally, laws are assumptions about where

the observations come frcm and how they are related. Laws need not be com-

plete in specification, i.e., ?i(u,u2)with P and U2 unknown, but they must be

complete in the sense that they allow for legitimate inference.

Laws usually include an (asaumed) explanation for variation in the data,

for example experimental error or diffsrent values of an independent varia-

ble. It itirelative to the laws (assumptions) that analysis procedures are

judged with respect to things like optimality, smaller variance, etc.

In sumuary, the data analysis approach can be viewed as a two step pro-

cess: selectingmodel input values and performing analyses involving the in-

puts and associated outputa. The foundation of the analyses is the observed

variation among the output values. Laws (assumptionsabout the relationship
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among the input values, the output values, and the model) provide the scope

within which inferences about the model are made. The validity and effective-

nes~ of the inferences are judged relative to the laws.

DEFINING IMPORTANCE

Most of the objectives in the next 6ection include some reference to im-

portant inputs (or sensitivity). Hence. some quantifiable meaning should be

attached to the term “importance,””if possible. We might say that an input is

important if a change in ite value causes a substantial change in the value of

the output. A meaeure of importance could be the partial derivative (sensi-

tivity coefficient). This approech to importance is reasonable when the rela-

tionship between the output and the inputs in linear) i.e.? under a “linear

model” law. Alternatively, one might look at the variance of th~ output under

the linear law, and use the square of the partial derivative multiplied by the

variance of the input (or the ratio of this quantity to the variiinceof the

output) as a measure of importance. My preference is for this quantity since

it combines rate of change of an input with its range of values, and it is in-

dependent of the units of the input.

Propagation of error, as the second technique above ia called, can be ap-

plied under the law that a Taylor series approximation of h(”) in the inputs X

is an adequate representation. In the nonlinear case, however, the partial

derivatives are generally non-constant functions of the inputs. Hence, where

to evaluate the partials and, even, the possibility of using a directional de-

rivative tend to cloud the issue of quantifying importance.

I want to leave the definition of importance as a possible item for dis-

cussion in this workshop. The following points might be kept in mind:

(1) There are many ways to measure importance relative to

the observed variation in a sample of out~~t variables.

(2) The laws under which measures of importance are valiu

should be identified.
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(3) The affect on the measures of violation of the laws by the

model should be known, at least qualitatively.

(4) Means of detecting violations of laws are needed.

OBJECTIVES OF SENSITIVITY MALYSIS

In this section, I want to just list some objective~ one might have for

performing a sensitivity analysi8. Having stated objectives, one can assemble

techniques and formulate strategies to create a sensitivity analysis method-

ology.

In sensitivity analysis, one might want to identifyz

(1) Important inputs,

(2) Impcrtant subsets of inputs,

(3) Important pseudo inputs, for example the product of

two inputs,

(4) Important segments of the range of values of an input,

for example a threshold value for importance,

(5) Inputs that are conditionally important, for example

input A i.eimportant when input B is greater than 2.

One could nlso aak which inputs are

(6) Unimportant inputs.

Sane unusuhl results could be observed in the course of a aens~tivity analy-

sis. In this case, an objective would be to

(7) Associate unusual results with specific (subsets of the)

inputs or their values.

Certainly, many more objectives could be stated, and each model being in-

vestigated will present special considerations. However, even a partial list

of objectives can be used to put together a set of techniques and to formulate

a beginning strategy for sensitivity analysis.
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A QUESTION

What does it mean to Bay that an input ;.simportant, or that the output

is sensitive to a particular input?

PART II - PN ANALYSIS OF TNE COAL2 NATIONAL ENERGY MODEL

In the following sections I will sunmarize some of the techniques and re-

suits frm a analysis of the model COAL2. This work was performed in colla-

boration with Andrew Ford. from the Energy Systems and Economic Analysi8 Group

at the Los Alamoe Scientific Laboratory, and is described in References [1]

and [2].

THE MODEL

The model used in our study, COAL2, was developed by Roger F. Naill of

the Dartmouth College Systems Dynamics Group under a contract, first from the

National Science Foundation, and later frau the Energy Research and Ilevelop-

ment Administration. The model is designed to allow investigators to test a

variety of energy policies that may affect the nation’s ability to reduce its

dependence on oil imports during a period in which domestic production of oil

and gas is on the decline.

In our study, 72 inputs were selected for investigation. Of these, 5

were assigned discrete probability distributions. The remaining 67 inputs

were assigned uniform distributions on intervals. All inputs were treated as

having independent distributions.

Thirteen outputs were recorded at 36 successive time points. The outputs

Gross Energy Demand (GED) and Average Energy Price (AEP) will be discussed

here.
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GATHSRING THE DATA

The values of the inputs were eelected

sampling [3] for the continuous variables.

according to Latin hypercube

For the sample size of 100, the

range of each input was divided into 100 equal (probability) length inter-

vals. The intervals were sampled according to uniform distributions to pro-

duce 100 distinct values for each of the inputs. The values of each input

were assigned at random and without replacement to the 100 runs.

For the discrete inputs, the ‘#alueswere &dSigned at random to the rung

in proportion to the

After obtaining

the COAL2 model. An

made to generate the

probabilities of the value~.

the 100 vectors of 72 input values, we made 100 runs of

additional run with all inputs at their mean value was

base case (nominal) output values.

Plots giving descriptive statistics for the outputs are given in Figures

1,and 2. The statistics were computed independently at each of the 36 time

pci~,ts. Figures 3 and 4 show the output plots obtained for the first 5 runs.

These plots typify the data for the two outputs.

From this point aur analyses proceed along two parallel paths: formal

calculations of a measure of sensitivity as a guide for assigning importance

to inputs, and informal examination of the data to get a feel for general

trends and irregularities. I will talk here about the formal study. An i:i-

foxmal study is found in Ref. [2].

FORMAL STUDY OF THE DATA

The general approach we use in formal sensitivity ana!ysi.sis outlined in

Figure 6. An assumption we operate under is that the determination of impor-

tant inputs fran a set of inputs is easier when the number of input~ is small.

If we let the vector of inputa X repreaelltthe set of inputs used to gen-

erate the output values, we begin by forming “candidate” subsets of X denoted
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by xc(t). At each time t, X is like the variable pool in etepwise regres-

sion, and Xc(t) is the subset of the pool that has been selected for inclu-

sion in the regression.

We use step-up partial rank correlation to enter inputb~ one at a time,

into the candidate subset. We continue to include inputs until (1) the ❑agni-

tude of the largest pertial rank correlation is less than a minimm value,

r~, for selection, or (2) the magnitude of the partial rank correlation for

the last selected variable is greater than a maximum value, rf, which mea-

sures the sufficiency of the linear fit.

The results fran lsi:~gseveral values of r8 ranging from 0.5 to 1.0 are

examined to see how the candidate subsets Xc(t) change over time. We have

found that using the 95% critical values from the distribution of the ordinary

correlation coefficient (with appropriate degrees of freedom) from nonual

theory produces pleasant results.

The sufficient fit criterion is used in the stopping rule because the

number of observations (runs) in our studies is not always greater than the

number of inputs. We have only seen this criterion active when the number of

runs is less than about 1/3 the number of in?uts. The value we use is

‘f = 0.98.

There are many things that could be said about using partial rank cor-

relation to select the candidate subsets, and about the stopping rules. Cer-

tainly, the procedures are ad hoc and depend heav~iy on linearity to be ef-

fectiwe. Let me leave this topic open, and just mention that we look at the

difference between results frum ranked and unranked data as an indication of

nonlinearity.

After constructing the candidate subsets at each time point, two pheno-

mena are often observed: inputs are selected at isolated time poin::s,and con-

versely, inputs are selected at all but a few of successiv~ time points. Be-

cause of these phenmnena~ we make the assumption that inputs will not be im-

portant at only isolated time poirts. ~is assumption leads to a refinement
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procedure for the candidate subsets. We smooth, or filter, the subsets by re-

moving inputs that were selected only once within a time interval of width w.

ikewise, if Inputs were selected at two time points not further apart than w,

we include them at all time points in between.

The choice of a value for w is critical, and requires a study of the re-

sults to find a good one. Too small a value for w can produce candidate sub-

sets that vary greatly over time. Too large a value can cause the size of the

subsets to get very large. The value used will depend greatly on the modeled

event and the time step size relative to the dynamics of the ❑odel. In the

COAL2 study, we used w ranging from 3 years to 9 years.

Summarizing the first stage of the formal sensitivity analysis, we

(1) From the initial set of inputs X, select candidate subsets

Xc(t) at each time point using step-up partial rank

correlation.

(2) Filter the subsets Xc(t) to include or remove inputs

depending cm their occurrence or non-occurrence in neigh-

boring subsets.

After eatabliahing the candidate subsets, we use them to calculate par-

tial rank correlation coefficients as measures of sensitivity. Plots of the

detenninmt of the correlation matrix as a function of time are given in

Figures 6 and 7. The plots indicate how well the linear (in ranks) law in the

inputs fits the data. The value of O indicates a perfect linear fit.

The plots reflect changes in the candidate subsets over time, and some-

thi of the quality of the laws underlying the analysis procedures. The

smooth behavior for GED is easily cont~asted with the behavior of the deter-

minant for AEP.

Plots of the partial rank correlation coefficients (PRCCS) are given in

Figuree 8 and 9.
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For GED, a total of 5 inputs were selected over the 36 year time hori-

zon. Input 6, long temn growth rate, enters at year 2 and continues as a

dominant input through year 36. Input 11, table multiplier for fraction of

energy d=anded as electricity, i~ in candidate subsets until year 26.

Changes from the value O on the vertical axis show when inputs enter or leave

the aubeeta.

We interpret the GED results as indicating that Input 6 i~ the most im-

portant input fxau year 3 until year 36. Input 11 is important early, and

diminishes in importance. After the first 20 years, Inputs 6 and 8 are the

only single inputs detectable qs important.

A comparison of the PRCCS in Figure 8 with Lhe sunmary statistics in

Figure 1 shows that the size of the candidate subsets decreases MS the vari-

ance of the output increases over time. One can also see that the analysis

and the linear law is less effective toward later years, where more variation

is observed in the datn. All things considered, past experience directs us to

classify results for GED as reliable.

The results for AEP show a somewhat different side of possible outcomes

in our sensitivity analyses. The behavior of the PRCCS indicates no clear

choiceo for inputs of standout importance. Input 20 dominates at a relatively

high level for the first 9 years. After that time, no inputs have a

partial correlation with AEP. The conclusion frcm the PRCCe is that

variable stands out ae important in a high degree (value of PRCC).

A c~~rison of the PRCCS for GED with those of AEP can lead to

very high

no single

the con-

clusion that the PRCC is incapable of detecting singly important inputs in

some casec. Another conclusion, however, is that single variables are not im-

portant fm AEF, but rather ccmbinatione of variables, aa in interaction in

analyeis of variance. In this probl=, there are 2556 dintinct pairs of in-

puts. I regret to eay that I have not pursued this ❑atter further.



-13-

In cloning, T have presented the basics cf a formal analysis procedure we

are using. Scmetimes it works very well, at other times it doesn’t. It does,

however, offer indication of what variables to look at first when trying to

explain the behavior of a model.
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1 - GED RUNS FROM LHS 100
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Fig. 3. Data plots for GED.
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Fig. 4. Data plots for AEP.
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